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1 Introduction

In the world of the philosophy of computation, a central problem is determining what it is that makes a
physical system a computer. Like many philosophical problems, this one is simple to state, and might not
seem all that difficult to solve, at least at first glance. In practice, one rarely encounters confusion about
which things in, say, one’s office, are computers and which are not. When checking my email or writing
commentary on a newly-published philosophymonograph, I’m pretty sure I’ve never tried to usemy coffee
cup or office chair because I thought they might actually be computers, and customers at Best Buy looking
for the latest computer fromApple aren’t likely to be convinced that a bucket of water or a pound of ground
beef can perform computations just as well as anything.

However, there is a problem.What most theorists—both computer scientists and philosophers—take
as definitive of computation is not some physical configuration of circuitry, but an abstract mathematical
object. Most familiar is what we now call the TuringMachine, a particular type of abstract automaton, that
features centrally in computability theory and other branches of theoretical science, as well as discussions
of computational functionalism in the philosophy ofmind. Because they aremathematical objects (or con-
structs, or what have you), TMs are wholly non-physical, just as are matrices, fractions, and differential
equations. Genuine computational systems of the type we all use nearly every day are, of course, physical.
What is needed, then, is a precise account of how to connect, or relate, the abstracta that are definitive of
computation to the concrete physical systems that constitute real computing machines. When a physical
system is connected/related in the right way to a particular automaton, we say that the system implements
that automaton; the philosophical problem is then making this connection/relation precise, such that ex-
amples of known computational systems are correctly characterized as computational, while examples of
known non-computational systems are correctly characterized as non-computational.

Anderson andPiccinini (A&P)havedeveloped a versionofwhat is called amapping account of compu-
tational implementation. In short, mapping accounts claim that implementing an automaton in a physical
system involves mapping the elements of the automaton to the elements of the physical system. Without
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some restrictions onwhat counts as a legitimate “map,” we canmap the state of any automaton to any phys-
ical system, producing the result that any physical system performs any (and every) computation (Putnam,
1988). A number of mapping accounts have been offered in recent decades, each of which provides con-
straints onwhat counts as a legitimatemapping between the abstract elements of automata on the concrete
elements of physical systems.

A&P’s RobustMappingAccount (RMA) is easily themost sophisticatedmapping account on themar-
ket, with each element of the account clearly and completely articulated, and the relations between them
made very explicit. It does justice towhatmakes contemporary digital computers genuine implementations
of automata, and thus genuine computing systems. Special attention is paid to considerations surrounding
Landauer’s Principle, which is about the energy costs required to change a physical element fromone stable
point to another—which, in the context of digital computation, is about flipping a bit.

The benefit of this attention is demonstrated in how the RMA fares better than Chalmers’ account of
implementation via combinatorial state automata. A&P show that Chalmers’ account, while an improve-
ment over simplermapping account, still fails to block illegitimate computations fromposing as legitimate.
In brief, the benefit of the RMA is that it introduces criteria that guarantee that it’s the physical comput-
ing system—rather than some clever mapping—that does the actual work of computing. This is just what
we should want: to use a very simple example, we do not want a mapping of the temperature of a rock at
minute 0, minute 1, minute 2, minute 3, minute 4, and so on, that corresponds to the digits 1, 4, 1, 5, 9, and
so on, to justify the claim that a rock just sitting at a stable temperature is computing the digits of pi. One of
the values of computing systems, after all, is that they literally compute, and if an account of computation
renders a stationary rock as a genuine computer, that account must be cast into the flames.

Further benefits of the RMA are shown in discussions of pancomputationalism, which, in general, is
the thesis that computation occurs in all physical systems. A&P discussion stronger and weaker varieties
of pancomputationalism, as well as what they call ontic pancomputationalism, which is the view that the
entire universe is, in some important sense, a computational system. In each of these cases, the RMA fares
well in justifying what I take to be the most sensible views.

More positive things could be said about their account; the majority of the book is dedicated to the
careful exposition of the RMA, showing where certain disagreements about the strength of the connec-
tion between an abstract formalism and a physical system can be captured as choice points in determining
whether a system implements a computation. Depending on that strength, A&P classify the system as ei-
ther weakly, robustly, or strongly implementing the computation in question.This flexibility, and the clarity
of the decision procedure for making such determinations, are remarkably clear.

Nevertheless, criticism is probably more interesting for present purposes. So let me say briefly what
my criticisms are. First, and most briefly, is a problem not just for A&P, but for all mapping accounts of
computation.When computation amounts to implementing any particular automaton, and automata need
not process information or representations in any rich sense, then computation ends up being about a kind
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of abstract specification of finite state changes in a physical system.There’s nothing wrong with this kind of
analysis of physical systems: it can be quite useful to see what different systems have in common with one
another from a bird’s-eye view. However, that also seems to miss what I take to be most interesting about
computation, what separates it from other physical processes, and what makes it so useful: the processing
of information and representations. My own view is that computation is, and always has been, essentially
about systematically manipulating abstract objects (primarily numbers) by physically representing them,
and manipulating those physical representations as a proxy for mathematically manipulating them. That’s
whatmakes theAntikytheramechanism a computer, but an arbitrary assemblage of gears thatmight be part
of a child’s toy not a computer. It’s also what makes people doing long division by manipulating numbers
digit by digit an instance of computation, while shuffling individual letters in some arbitrary, meaningless
(but systematic!) way is not an instance of computation. However, as I said, this is not a problem specific
to A&P, but a fundamental disagreement about what computation is in the first place.That argument is for
another time.

Thecriticisms specific toA&P that I’ll address here are as follows. First, despite somepassing remarks to
the contrary, the RMA cannot characterize analog computation. Second, it is not clear tome that the RMA
has the resources to distinguish between systems that can be viewed as computational and systems that are
genuinely computational. Finally, the last chapter, which is meant to connect the RMA to concerns about
the place of computation in cognitive science and neuroscience, fails to clearly show how concerns about
teleofunctions and medium independence cohere with the RMA. So let’s go through these one-by-one.

2 Mappings and AnalogComputation

Virtually everyone takes analog computation to be computation that uses continuously-valued, as opposed
to discretely-valued, variables. This is sort of true, but misses cases of genuinely discrete analog computa-
tion. Moreover, it misses the more important feature of analog computation, which is that it uses physical
magnitudes to represent numeric magnitudes; I’ve argued for these points elsewhere. But we can set this
aside for now, and just consider continuous analog computational systems.

Unlike digital computation, analog computation does not involve a special computational formalism
like TMs or other automata. This is a simple point, but one not appreciated because of what I call the
“N ̸= 1 Problem.” This is the problem whereby digital computation is taken to be the paradigm of com-
putation, and thus features of digital computation are considered to be necessary for any computation.
However, analog computation and analog computational systemspredate digital systems, even though they
are no longer studied or taught in the way that digital systems are, and have as legitimate a claim to being
genuinely computational as do digital systems. The result is that, because digital computation is taken to
necessarily involve the implementation of automata, theorists and philosophers of computation uncriti-
cally assume that all computation must work like this, and it’s a simple matter of replacing the automata of
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digital computation with some other formalism for analog computation.
Let’s look at a real example. Consider the following initial value problem (a differential equation with

initial conditions), adapted from (Peterson, 1967, p. 36):

y = x′′ + 3x′ + 16x; y = −80

x′(0) = −0.64; x(0) = 2

An electronic differential analyzer (EDA), one of the oft-used components in many electronic analog
computers, can be set up or programmed to solve this system. Doing so requires that we connect certain
electronic components in a way that reflects the mathematical structure of the system. In this example,
shown in Figure 1, we have an adder (triangle with

∑
), two integrators (triangles with

∫
), a sign inverter

(triangle with−), and two multipliers (circles with×).

x” -x’ 

2 v-0.64 v-80 v

x
16× ∑ ∫ ∫

—3×

Figure 1: Electronic analog computer schematic.

Note that the values of the variables are not “encoded” into a digital representation; the values of the
variables are simply the magnitudes of the voltages. Further, there is no algorithm here, in the usual sense.
Integration, summation, andmultiplication are all performed by circuit elements.There is, of course, a way
that these operations are performed, which involves manipulating those voltages just mentioned. But this
is a far cry from how one specifies how integration is done in a digital computation (e.g., by a Runge-Kutta
algorithm, or a trapezoidal approximation).

From the schematic in Figure 1, an actual analog computer would consist of these different elements
connected as suggested: the adder, for example, has three inputs (an input to the initial problem, and two
inputs from two different multipliers), and one output (to the first integrator). There is no “architecture”
other than the connection of these different components.
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So, what exactly is the formalism that is implemented? One answer: the equations. These equations
perfectly describe the physical system that is the analog computer in a way analogous to the requirements
of A&P’s account. So we might say that the physical system—the analog computer—implements those
equations. Unfortunately, this means that lots of physical systems implement lots of these formalisms, and
analog computers are everywhere. Systems described by differential equations are everywhere: this is why
differential equations are ubiquitous in science and engineering. While not quite pancomputationalism,
this line of thought results in taking an enormous range of physical systems as analog computers: those
systems implement the equations that describe them.

So if the equations don’t work as the formalism to be implemented, what else might there be? An-
other thoughtmight be that the schematic shown in Figure 1 is the formalism.Thatmight seem promising,
but then the formalism in question isn’t medium independent: this is a schematic for an electronic analog
computer, after all, which uses the magnitude of voltages to represent the values of the variables. Medium
independence is supposed to be a defining feature of computational formalisms, so this is a non-starter.

What about a modified version of this schematic, where we erase the three “v”s? Then, it would seem,
we would have something medium independent. True enough, but then we also just have a different rep-
resentation of the equations that we started with, and we’re back at the first problem we faced.

The solution is to accept that analog computers just do not implement a medium independent formal-
ism in the way that digital computers do. The only reason that this is hard to accept is due to the insistence
that physical computationmust involve the implementation of medium independent formalisms, which in
turn is due to theN ̸= 1 Problem.

Before ending, it is important to note that analog computers can be multiply realized: there are dif-
ferent mechanisms that can perform integration or multiplication. More dramatically, the system of equa-
tions could be solve by a mechanical analog computer that uses moving parts andmagnitudes like angle or
number of rotations, or length of a shaft, with integration performed bymechanical systems. Nevertheless,
physical analog computation is not a matter of implementing a computational formalism.

3 Computational/MathematicalModeling vs. Explanation

One of this books’ co-authors wrote an influential article describing the difference between computational
modeling and computational explanation (Piccinini, 2007). In short, while all sorts of scientific phenom-
ena can be modeled computationally, only a few such phenomena are (putatively) explained, or explain-
able, by the computations they perform. Meteorologists computationally model weather systems all the
time; but there are no weather-related phenomena that are the result of the computations that weather sys-
tems literally perform.This is in contrast withmuch ofwhat happens in computational neuroscience, where
particular capacities of neural systems are explained via the computations that those systems are purported
to literally perform.
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The RMA account certainly allows for all kinds of systems to be modeled computationally without
those systems implementing the computations that model those systems. Given the requirements of the
Principle of Computational Equivalence (PCE), there are many ways in which a particular computational
system might model, or otherwise describe, some other system.

However, if there are physical systems that do implement some automaton, then they are, by the lights
of A&P, computing. There are lots of candidates for such systems. For example, many artifacts implement
automata, such as traffic lights, pressure-sensitive door openers, garage door openers, coin-operated turn-
stiles, and many more. This is a consequence of the fact that may of these systems are modeled by state
diagrams that are essentially just automata.

locked unlocked

push

coin

coin

push

Figure 2: State diagram for a coin-operated turnstile.

There aremany examples in organisms as well. DNA transcription is an example, where strings ofDNA
are converted into strings of RNA: this is a straightforward implementation of an automaton. Or, the vast
numbers of electrophysiologically active cells, particularly non-neural cells, such as the smoothmuscle cells
of the heart, stomach, and pancreas.

Now, I suspect that A&P may reply that these examples are all medium dependent in some way that
might disqualify them. Whether medium independence is applicable or not is unclear (see the next sec-
tion). However, I do not see how to thread the needle between getting the electric potentials generated by
neurons to be medium independent, while these other examples are medium dependent. If the argument
that neural firing is medium independent is sound, despite the seeming dependence on particular ions and
other chemicals (i.e., the various potassium, sodium, and calcium currents (among others), plus the par-
ticular neurotransmitters) which are responsible for neural firing, then there is no principled way to block
these other examples without begging the question.

But back to the main point. If these examples are all genuine instances of the implementation of au-
tomata, then they all literally compute. But notice that this fact is completely irrelevant to the explanation
of what these various examples do. DNA transcription is not explained by “transcription computation,” or
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“polymerase computation.” Coin operated turnstiles are not explained by the computations they perform.
A broader concern has to do with the utility of this notion of the implementation of automata. A&P

use the example of harmonic oscillators as what they call a structural description of a physical system—
a description that does not contain reference to the particular physical materials or components of that
system. Harmonic oscillators describe spring-mass systems, certain electrical systems, acoustical systems,
andmanymore. Finding out that a system can be described as a harmonic oscillator is useful because it tells
us that something about how the system oscillates, and it provides us with mathematical tools to analyze
that oscillation once the parameters of the relevant equations are determined.

Another example might well be game theoretic descriptions of social or political interactions. That a
particular interaction is an instance of Prisoner’s Dilemma, or Battle of the Sexes, for example, is infor-
mative. Just like harmonic oscillators, these mathematical frameworks can be applied to a wide variety of
situations, with a wide variety of particular payoff matrices. Finding out that a system can be described
as a Prisoner’s Dilemma is useful because it tells us something about that system, and it provides us with
mathematical tools to analyze that system once relevant parameters are determined.

So what is the analogous payoff for determining that a system implements an automaton?One obvious
one is that when we want to build a system that implements a given automaton, then a successful imple-
mentation guarantees (within limits) that the physical system’s behavior is fully described (at the relevant
physical level) by that automaton. This is by no means a trivial feat: computer engineering is hard! But
more generally, when we discover that some system is computing, what kind of inferences can we draw
about another system that is also computing?

If both systems implement the same automaton, then we know that they will have the same suite of
behaviors. But if they implement different automata, there does not seem to be anything interesting we
can say about what they have in common. Even if we know they implement the same type of automaton
(e.g., two different physical systems implement two different linear bounded automata), the huge variety of
linear bounded automatamakes it impossible to say that they have anything interesting in common (except
that they both implement some automaton).This is complete unlike the situation of a harmonic oscillator,
or a Prisoner’s Dilemma, where these types of structural descriptions are useful for saying what different
physical systems have in common: that they oscillate in specific ways, or that they have a Nash equilibrium
that will result in less-than-ideal outcomes.

On this front, the generality of the behavior of automata makes them useless for comparing the behav-
ior of systems that implement them—unless they implement identical automata. Automata can’t compute
everything, they can compute infinitely many things. Now, to be fair, there are some limited cases where
knowing that two systems implement the same type of automata can be used tomake some limited general-
izations. Two systems that implement DFAs, for example, both cannot recognize languages more complex
than regular languages. However, with large enough DFAs, this is a theoretical difference that is irrelevant
to digital computational systems here on Earth. After all, all extant digital computers are actuallyDFAs, not
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TMs, so they all have exactly the same limitations.
All in all, the concerns of this section have to do with what we get out of saying that a physical sys-

tem implements an automata, outside of the clear utility in engineering practices. There may be things to
say here, but I do not see what they are. My own view is that this is where a representational account of
computation—as I like to call my own view—gets its purchase: what is useful about knowing that two sys-
tems are computational is that they both traffic in representations of numbers (or representations built out
of representations of numbers), and that those representations are manipulated in systematic ways; i.e., via
the manipulation of the physical properties of those representations that do the representing. However,
that discussion is (again) for another time.

4 Medium Independence andTeleofunctions

Thelast sectionof the book aims to connect theRMAto issues of computation in the cognitive sciences and
neuroscience. Here, medium independence plays a prominent role that it did not otherwise play in the rest
of thebook (althoughone could argue that itwas implicit inmuchof the exposition, even though itwas only
explicitly mentioned once or twice). I have two main concerns: first, there is a kind of elision between the
process of abstracting and the notion of abstract objects, whereby one can get to abstract objects by simply
abstracting (i.e., omitting details) from physical descriptions. Of course, one can do whatever one wants!
But it is not at all clear what, if any, restrictions should be in place for this process. This is important for
natural systems, where we would like to know if they perform any computations (and if so, which ones),
rather than assuming that they do from the outset. If we do not have a method in place for treating the
question of whether a natural system computes as something like an empirical hypothesis, then the project
of computational explanation loses all force; instead, we have computational perspectivalism, where one
researcher can choose to view a system as computational (by assuming it does from the outset) and another
can choose not to (by not so assuming).

My second concern is the divergence of what counts as computation in this chapter from the earlier
chapters. By the lights of the rest of the book, a physical system can implement an automaton—can literally
compute—without it having any functions, or even without us knowing anything about it.This is a simple
consequence of the account, whichA&P acknowledge.However, when it comes to organisms and artifacts,
we are told in Chapter 9 that physical computation in specifically biological systems requires a mechanism
with a function.The reason for this difference between computation in non-biological physical systems and
biological physical systems is to account for thenormative aspect of computation in artifacts andorganisms.
To be sure, these extra requirements seem to be consistentwith the account developed earlier; however, the
result is that there may be very many computations going on in an organism considered only as a physical
system, but which then do not count as computations when the organism is considered as a biological
system. Similarly, theremay be verymany computations going on in an artifact considered only as a physical
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system, but which then do not count as computations when the artifact is considered as an artifact. This
is at least in tension with the earlier, well-motivated idea that computation is just about the right kind of
mapping between physical states and computational states.

Let’s look at the first concern first, having to do withmedium independence and abstraction. Consider
the following quotation.

Physical computation is a process that becomes evident once the appropriate abstraction
(omission of detail) is performed (cf. Kuokkanen 2022; Fuentes 2023). Abstraction is a fea-
ture of all physical descriptions, with the possible exception of some complete descriptions of
elementaryparticles.The relevant question iswhich abstraction is needed to capture thephys-
ical signature of computation. The needed abstraction is the selection of a system’s relevant
physical states and state transitions to be mapped onto computational states and state transi-
tions. With the right mapping in place, the property that manifests in genuine physical com-
puting systems is physical-to-computational equivalence, which is a medium-independent
property. (Anderson & Piccinini, 2024, p. 244)

The notion of a medium-independent property is very difficult to explicate, because there seem to be
several conflicting definitions. On this same page, medium dependence/independence is determined by
“whether the teleofunction that defines it ismedium-dependent or -independent.” So, playing chess is given
as an example of medium-independence (or, in terms of a property, perhaps this should be “the ability to
play chess,” or “being a chess playing machine”). But we just saw that physical-to-computational equiv-
alence (PCE) is a medium-independent property, so that means that the teleofunction that defines PCE
must bemedium independent. I cannotmake sense ofwhat a teleofunction could evenbe that defines PCE,
especially in an organism. It would amount to something like: “X has the function of ensuring that there
is a physical-computational equivalence between a computational description and a physical description.”
If not an outright category mistake, this is not a function that an organism could have. I suppose, in some
way, the examples of this very book have that function: they are intended to show that these things hold. But
this is totally opaque.

A few pages later, we get a different characterization of medium-independence, couched in terms of
vehicles and multiple realizability.

[P]rocesses that manipulate multiply realizable vehicles are medium-independent, and bio-
logical systems whose processes are medium-independent and manipulate vehicles in accor-
dance with a rule are biological computing systems. (Anderson & Piccinini, 2024, p. 250)

We are then told that neurocognitive systems do just this, because neural firing rate and spike timing
are the most functionally-relevant neural properties, and firing rate and timing are multiply realizable. As
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I’ve argued elsewhere, and which is again evident in this chapter, one cannot both declare from the out-
set that some processes are medium dependent (what locks, for example, do) while others are medium
independent (what neurons do), but then offer a definition of medium independence that counts the vehi-
cles processed by supposedly medium-dependent processes as multiply-realizable (the vehicles processed
by locks are definitely multiply realizable, because different locking mechanisms require different types of
keys), and fail to then count them as medium independent after all.

Let’s dig a little deeper. Let’s grant that the vehicles processed by neurons (spike frequency and timing)
are medium independent. Lots of other things can generate frequencies and timings: all of the systems
described by harmonic oscillators, for instance, so audio signals, and springs, etc. But none of those could
actually beprocessedbyneurons.Neurons actually have touse voltage changes in a verynarrow range,where
those voltage changes areproducedby themovementof ions in andoutof the cell.This seemsverymedium-
dependent, but again, let’s grant that it’s not for the reason just given.

What blocks lots of other things from also not beingmedium independent for exactly the same reason?
Declaring that locks are medium dependent, even though their vehicles are just as multiply realizable as
neural spikes, is just begging the question.

What seems to be going on here is that abstracting from the particulars of neural firing to get to some-
thing like “only the frequency and timing of the firing matter, which is multiply realizable,” is legitimate
abstraction, but “only the pattern of the key matters, which is multiply realizable,” is illegitimate abstrac-
tion.

This seems unmotivated, except of course if one has already decided that neurons compute but that
locks don’t. But by their own lights, lots of things are medium independent, despite what they might seem
prima facie. It’s simply begging the question if one gives a characterization of medium independence, but
then does not accept the application of that characterization to cases that we might have thought were
medium dependent before applying the characterization.

This all seems to turn onwhat kind of abstraction is legitimate andwhat kind is not. Later, single-celled
organismic information processes are given as examples of medium dependent processes, because the bio-
chemical cascades depend on particular molecules. True enough. But so does neural firing! If abstracting
away from the particular molecules (potassium and sodium ions, serotonin, etc.) in neural firing is okay,
then it shouldbeokay to abstract away from theparticularmolecules in the single cell example.Themultiply
realizable property is the presence or absence of a signal. Of course, if we did actually realize this property
with some other molecule, it wouldn’t work in those cells. But that’s true of neural firing, too. We can’t
switch to other molecules, and we certainly can’t switch to acoustic frequencies and timings. But all that
matters in the single cell case is presence or absence of a signal, which is absolutely multiply realizable.

Now, perhaps there is a way to clean this all up; I have my doubts, which I have expressed carefully in
print (Maley, 2023). To be fair, A&P note this work, but then beg the question in the way I just mentioned.
Nothing in this discussion of medium independence improves upon the characterization of medium inde-
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pendence outlined in Piccinini’s earlier monograph (Piccinini, 2015), which was very carefully articulated.
In fact, if anything, this chapter makes the notion murkier than it was before.

Finally, although it’s only mentioned in passing, the authors claim that“Since medium-independent
properties do not depend on the specific constitutive properties of a medium beyond its possession of
relevant degrees of freedom and their organization, medium-independent properties can occur at any spa-
tiotemporal scale,” (Anderson & Piccinini, 2024, p. 246), emphasis original. However, this is absolutely
not true of the examples they provide of medium independent properties, particularly in the context in
which they are supposedly instantiated. Neural firing frequency and timing are supposedly medium inde-
pendent, but only frequencies within a very specific range are going to count in a neural system. Further,
the frequency of anything is fundamentally limited by physical law. Playing chess was another putative ex-
ample of a medium independent property, but any physical realization of chess can be only so big or small,
again, limited by physical law. Too big and a chessboard will collapse under its own weight and create a nu-
clear explosion; too small and there will be no particles able to actually realize it. The supposedly medium
dependent properties of sprinkling water and pulling corkscrews face exactly the same constraints. If we
have a planet-sized cork, we could have a planet-sized corkscrew; we can have a microscopic sprinkler, as
long as the nozzle is big enough to allow molecules of whatever fluid to flow out.

Enough about that: let’s turn to the second concern.This concern is the addition of the teleofunctional
requirements on top of the earlier requirements. Coupledwith the earliermedium independence concerns,
it seems that we have a completely separate—albeit compatible—account of computation in this chapter,
which is basically a summary of the account developed in (Piccinini, 2015). In other words, we have the
RMA account of computation, which gives objective criteria for what it takes for some physical system
to compute. As mentioned earlier, this account does not require functions at all. Separately we have the
mechanistic account given in Chapter 9, which does.

It seems that what the authors are doing here is providing the additional ingredients to satisfy Crite-
rion U, thus making the computations implemented in artifacts and organisms satisfy a Strong Mapping
Account of implementation, in turn makingmiscomputation a possibility. But then this is at odds with the
Robust Mapping Account developed in Chapter 5. In particular, the authors claim that Robust Mapping
“is both necessary and sufficient to qualify a physical system as a physical computing system,” (Anderson&
Piccinini, 2024, p. 123). But givenChapter 9, this seems to not be true if those physical systems are artifacts
or organisms. I do not knowwhat systems are supposed to be counted in as computing systems that are not
organisms or artifacts in the first several chapters of the book.

Thispoints to abroader concern: accounting formiscomputationwas supposed tobeoneof thedesider-
ata of an account of physical computation, butwhenwe encounter how theRMAhandlesmiscomputation,
we are told that it needs additional resources such that “Robust” becomes “Strong.” So either handlingmis-
computation should not be a desideratum, or the RMA is not actually an adequate theory of physical com-
putation.
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Relatedly, in Chapter 9, we are never told what particular automaton, or other formalism, is the one im-
plemented by, say, neurons engaged in firing. What makes them computing is something entirely different
than what makes physical systems computational in the earlier part of the book. Some candidates for the
relevant formalism might be something like the Hodgkin Huxley equations that describe neural firing, or
perhaps the purely mathematical specification of how the magnitudes of dendritic currents are added and
multiplied, then if that magnitude reaches a certain threshold at the cell body, an action potential is gener-
ated, characterized by a different kind of current with its ownmagnitude. If this is the idea, then we face the
same kinds of problems mentioned in the section earlier on analog computation: these just aren’t compu-
tational formalisms of the kind required in the rest of the book. In any case, if that formalism is necessary,
we are not told what it is, but we are told that neural systems compute despite this omission.

5 Conclusion

The primary virtue of this book is the clarity and precision of the Robust Mapping Account of Implemen-
tation and the various criteria that go into satisfying this account. As always, the downside of any precise
characterization is that itmakes shortcomings equally clear. As such, I donot think the account can bemod-
ified to account for analog computation because of the requirements of a particular type of computational
formalism.The fix is to just leave out the suggestion that this account can apply to non-digital computation.
At the same time, the notion of medium independence is unclear, except when we start with pre-given au-
tomata. Perhaps medium independence can be fixed in some way, but I do not knowwhat that way will be.
The rest of the account, however, does not seem to me to need fixing, but simply limited to digital compu-
tation. I look forward to the authors’ thoughts about these comments.
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