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01 The robust mapping account 

‘Mapping views in the computation literature spell out the relation between a computational formalism and 

a physical system in different ways. The aim of these theories is to relate an abstract (as in abstracta), 

computational description to the physical world allowing us to identify which physical systems in the world 

literally implement computational structures. A visual representation of the relation is represented below. 

The mapping is meant to capture the nature of the downward arrow—the implementation relation—by 

specifying the features of the physical system that must be.  

 

Any theory that does this answers the implementation question (Williams, 2023).   

 

 
 

Some of these mappings are highly permissive in that they allow for mappings to physical systems that are 

obviously not computing systems (like pails of water, walls, and rocks). To fix this problem, different 

theories have been proposed that place various constraints on the mapping. For example, some place causal 

restrictions on the state transitions of the physical system. Although there has been a lot of work done to fix 

the mappings and prevent trivial implementations, there hasn’t been an account to goes into as much detail 

about the nature of the physical properties that are mapped to how to understand the computational 

formalism as Anderson and Piccinini’s Robust Mapping Account.  

 

 

In their account, they go into detail about the states and processes that are involved in the mapping, S and 

P, respectively: 



 

S (states): For any [formal] computational state, there has to be at least some physical states of the 

system that maps onto each of the formal computational states. The physical states can’t map onto 

more than one of the computational states.   

 

P (processes): For any [formal] computational state transition, the physical system must also 

transition to another physical state.  

 

S and P specify an isomorphic mapping between formal states and physical states as well as formal 

transitions and physical transitions on a digit-by-digit basis where digits are understood as “individual 

computational variables” (pg. 56). S and P don’t offer anything more than what traditional mapping views 

offer, most of which depend on some kind of isomorphic mapping of this kind. In addition to S and P, they 

offer a third criterion, U.  

 

U (usability): There exists a computationally transparent use plan compatible with the physical 

description of the physical system which specifies physical intervention protocols and conditions 

that would enable agents to use the physical system to compute a computation reliably for inputs 

of their choosing.  

 

I won’t get into the details of what makes the use plan computationally transparent. The point, I take it, is 

that the physical system should be able to implement every computation that is specified in the formal 

computation that is being mapped to the physical system without requiring additional information beyond 

what is implied in the formal description—that everything that’s needed to perform the specified 

computation is present within the physical system itself. Usability constraints have been introduced into the 

literature by other accounts as well, they are specified more precisely here just as the other features.  

 

What this account offers that is not present in other implementation views is the ‘physical-computational-

equivalence’ criterion (PCE); this is an equivalence between the formal computation and the physical 

system where the physical states and the formal states that are being mapped should each have the same 

computational trajectory—this is a sameness in information. Meaning, we should be able to infer what the 

next physical state is for the physical system just as we are able to do with the formal computation. The 

PCE is meant to block trivial implementations because systems like rocks, walls, and pails of water don’t 

have computational trajectories.  

 



Systems that meet S and P only are considered “weak” computational systems while systems that meet S, 

P, U, and PCE are considered “strong.” Robust computational systems, however, are only required to meet 

S, P, and PCE, which is the kind of computational systems that Anderson and Piccinini are interested in: 

hence A Robust Mapping Account.  

 

According to the Robust Mapping Account, for any claim about implementation of a formal computation 

in physical systems to be adequate, it must be supported by a robust computational description of a physical 

system: 

 

CDPS: A computational description of a physical system is a physical description of a physical 
system that maps onto a computational definition of a computing system via a physical-to-
computational mapping.  
 

 

A robust physical-to-computational mapping occurs when all physical states of the physical system map 

onto all variables of the formal computational description and they satisfy the PCE condition. The phrase 

“physical-to-computational mapping” is just another way to say “implementation relation.”  

 

Note that this account stays true to the idea that the implementation relation is a relation between a formal 

computational description and a physical system: it answers the implementation question.   

 

02 VR, MR, and MI 

Now that the theory is on the table, I want to spend time on some things that are said in Chapter 9 

(Computation and the Mind). Importantly, up to this point, the authors are giving a theory of computational 

implementation, which is meant to apply to computational systems generally. It is not a theory of when and 

how the brain, specifically, implements a computation. But because the theory should capture all computing 

systems, if the brain is a computer, then the theory should make sense of how the brain implements a 

computation. Given this, the authors address how their theory fairs when it comes to thinking about a 

computational mind.  

 

In Chapter 9 the authors say that they’ve “expanded on their theoretical framework,” however; it’s not clear 

how what they say in this chapter is an expansion. The robust mapping account seems to apply to 

computational artifacts, as the authors show, but it’s not clear, based on what is said in Chapter 9 that it can 

be fruitfully applied to biological computation because the “expansion” of the theory does not specify a 



way to understand anything like computational implementation in biological systems. (In this section I will 

set ‘consciousness’ aside and focus on what the authors say about cognition.) 

 

The authors argue that cognition is explained by situated neural computations—that “there is strong 

evidence that there exists a computational formalism—in the sense… defined in Chapters 1-5—such that 

neurocognitive physical dynamics map onto a computational description couched within that formalism in 

ways that satisfies at least S, P, and PCE” (pg. 234).  

 

What happens in the rest of the chapter draws heavily on previous work, especially Neurocogntive 

Mechanisms (Piccinini, 2020).  

 

(Section 9.2, Levels, Powers, and Qualities): The authors describe how physical systems have 

compositional structure, i.e., physical systems have proper parts—or subsystems—that compose them and 

may in turn compose larger systems where the relation between the parts and wholes is that wholes are 

invariants under certain changes in their parts. For example, a forest persists through the death and birth of 

many of its trees, so the forest (the whole) is invariant under changes in its parts (the trees) (pg. 240). This 

takes higher-level properties to be aspects of their lower-level realizers. The difference between higher-

level properties and lower-level properties is understood in terms of granularity (pg. 234). Higher-level 

properties, as I understand it, are non-structural properties such as size, mass, charge, the power to evolve, 

etc. (pg. 235). To return to the forest example, forest density (the higher-level property) is an aspect of the 

distribution of trees over an area (the lower-level properties) (pg. 240). Realization, then, according to the 

authors, is understood as the relation between a property of a system (forest density) and properties and 

relations possessed by the parts of that system (distribution of trees) such that the higher-level property 

(density) is an aspect if the lower-level properties (trees). They call this type of realization variable 

realizability (from Piccinini 2020, Chapter 2).  

 

They contrast variable realizability with multiple realizability (MR) and say that MR occurs when a 

higher-level property can be variably realized—realized by many different lower-level properties—via 

different types of mechanisms (pg. 241). For example, mouse traps are multiply realizable because the 

higher-level property (catching mice) can be realized by different physical mechanisms: one-way gates, 

glue, electricity, etc. However, the lower-level property is constrained by whether it is the kind of thing that 

can realize the higher-level property. 



This is then contrasted with medium-independence (MI) where a higher-level property can be realized by 

different physical media but all that is required of the physical media is that it possesses enough degrees of 

freedom to carry out the task.  

 

The point isn’t to argue against these distinctions or how they’re drawn—or whether this way of thinking 

about multiple realizability in philosophy of mind is correct. Instead, the point is that no matter which way 

you cut these characterizations, as long as the higher-level properties are understood in the way that authors 

understand them, they don’t work with a theory of implementation. This is because the implementation 

relation is meant to capture the relation between a formal computation and a physical system. Higher-level 

properties, as they are understood in this chapter are not formal computations; they are aspects of the lower-

level properties such as their size, shape, mass, etc. They are aspects of lower-level properties defined in 

terms of abstraction – this is different from defining the relation between abstracta and a physical system. 

Formal computations are abstracta. This is the first indication that the view, when it comes to cognitive 

computations, is going in a different direction than what we’ve been told up to this point.  

 

The authors go on to say that “physical systems have different types of physical properties relevant to 

different phenomena defined and described at different levels of granularity and specificity. They say, “our 

question is which type of description captures the physical signatures of computation. The needed 

abstraction is the selection of a system’s relevant physical states and state transitions to be mapped onto 

computational states and state transitions. Once the right mapping is in place, the property that manifests in 

genuine physical computing systems is physical-to-computational equivalence—a medium independent 

property” (pg. 244). I want to point out here that they still seem to be targeting the implementation relation 

when it comes to cognition.  

 

Remember that the physical-to-computational equivalence (PCE) is an equivalence between the formal 

computation and the physical system where the physical states and the formal states that are being mapped 

should each have the same computational trajectory. PCE, they say, is a medium-independent property. 

Medium independent properties are arrived at through the process of abstraction—omitting details—so, the 

physical computation – the set of physical state that are equivalent to the formal computational states 

become evident “once the appropriate abstraction… is performed” (pg. 244). This seems to spell out the 

implementation relation this way where the formal computation is mapped onto some level of abstraction 

that bears the physical signature of computation.  

 



The authors go on to say more—they say that physical computation by an organism or artifact is the 

processing of multiply realizable vehicles by a teleofunctional mechanism in accordance with a rule (pg. 

248).  The multiply realizable vehicles are the formal computational states, inputs or outputs which are 

encoded in physical forces or subsystems that are specified at some level of abstraction (the physical 

vehicles). Those physical forces or subsystems that encode the formal computational vehicles do so 

according to a rule where the rule is multiply realizable and the processing of the rule is medium-

independent. This turns the implementation relation into something like this:  

 

 

 

 
 

 

They go on to say that the issue when it comes to biological computation is determining whether a biological 

process maps onto a computational formalism in a robust way. This is a matter of determining whether a 

biological process is medium-independent considering either its narrow (what a system does in isolation 

from its environment) or broad (how a system relates to its environment) teleofunctions.  

 

03 What happened to the relation?  

At this stage of the argument (section 9.5.2) the authors asks whether neurocognitive systems perform 

physical computations (pg. 250). This is where the view seems to shift. Regarding narrow teleofunctions, 

the authors state that cognitive teleofunctions involve the production of the appropriate motor outputs in 



response to relevant sensory inputs and internal states while interacting with the rest of the body and the 

environment through the use of neurons that transmit spike trains to activate muscles. They then say that 

the narrow teleofunctions of neurocognitive systems are to yield outputs that stand in certain mathematical 

relations to inputs and internal states—that is solving mathematical problems… and aspects of spike trains 

that make the most functional difference are rate of transmission and timing. They conclude that spike 

frequency and timing are multiply realizable properties, therefore the vehicles of neural processes are 

multiply realizable in the right way and since the vehicles are multiply realizable, they are medium-

independent, “and biological systems whose processes are medium-independent and manipulate 

vehicles in accordance with a rule are biological computing systems” (pg. 250).  But remember that 

they are thinking of multiple realizability in terms of higher-level and lower-level properties where spike 

frequency and timing are higher-level aspects of the brain—they are medium independent because of this 

understanding. But we don’t need a theory of implementation to relate these types of higher-level 

properties to the systems they belong—we come by them through abstraction. You can’t use abstraction to 

get to the mathematics—a reason we need a theory of implementation in the first place.  

 

What this means is that the authors have identified neurocognitive systems as being computing systems in 

virtue of their processing medium-independent vehicles in accordance with a rule. Note that this is the view 

put forth by Piccinini in other contexts—it’s a mechanistic account of physical computation—of 

neurocognitive mechanisms that is meant to answer the “individuation question”—a question regarding 

how we individuate physical systems that compute and those that don’t. Notice that this is not relational—

this does not pick out computing systems by specifying the implementation relation—it’s the bottom half 

of the implementation relation. This means that whether a system counts as a computer is decided at the 

mechanism-level—the individuation question is answered based on features of the physical system alone.  

 



 
 

 

The robust mapping account is a theory of computational implementation—it answers the implementation 

question. This is different from the individuation question (as the authors also point out at the start of the 

book). However, the authors think that the individuation question and the implementation question are “two 

sides of the same coin” (pg. 7). Meaning, if physical computations are individuated by certain properties, 

then physical systems must have those properties to implement computations, and conversely if it takes 

certain physical properties to implement computations, then physical computing systems are individuated 

by those properties. Thus, the authors say, “while we will focus on implementation, our account is also an 

account of computational individuation” (pg. 7). 

 

It follows from this that, if computing systems are individuated in virtue their processing medium-

independent vehicles in accordance with a rule, then being able to process medium-independent vehicles in 

accordance with a rule is enough for them to implement computations.   

 

04 A dilemma  

However, as we know, In Chapter 5, the authors present and defend their robust mapping account, making 

the case that robust computational descriptions are needed to capture the physical signatures of 

computation—an account that must incorporate the robustness requirement (pg. 5). This means that for 

physical system to bear the physical signatures of computation—that for a physical system to implement a 

formal computation, it must meet criteria S, P, and PCE.  And if it meets S, P, and PCE, then we know that 

it’s a computing system, so we’ve answered the individuation question, too—the other side of the coin.  

 



So, which is it? Do we get to say that a physical system implements computations when it processes 

medium-independent vehicles in accordance with a rule? Or is this just a special view for cognitive 

computation? If so, that seems strange. Or do we say that a physical system implements computations 

because it satisfies S, P, and PCE and that’s what makes it a computing system, like chapter 5 says? Based 

on the claim made on page 1, “determining which systems compute and which systems don’t is a matter of 

identifying the physical signatures of computation,” my question is whether the physical signatures of 

computation differ based on whether the system is an artifact or biological, because what happens in 

Chapter 9 seems to provide an entirely new way to think about implementation if they really are two sides 

of the same coin as the authors say.  

 

 

 


